Pesquisa e Desenvolvimento

Unesp e MIT desenvolvem sensor de gás tóxico

Capacidade é muito maior do que os sensores já usados.

Agência Fapesp
06/11/2013 17:08
Visualizações: 520 (0) (0) (0) (0)

 

Pesquisadores do Instituto de Química da Universidade Estadual Paulista (Unesp), campus de Araraquara, em parceria com colegas do Departamento de Ciência e Engenharia de Materiais do Massachusetts Institute of Technology (MIT), Estados Unidos, desenvolveram um material à base de óxido de estanho (SnO) com capacidade de detectar dióxido de nitrogênio (NO2) muito maior do que os sensores químicos já usados para identificar esse tipo de gás altamente tóxico, formado nas reações de combustão dos motores dos veículos.
Desenvolvido por meio de um projeto apoiado no âmbito de um acordo com o MIT, o material deverá resultar em uma patente compartilhada pelas duas instituições e foi descrito em um artigo publicado na edição de setembro da revista Sensors and Actuators B: Chemical.
“Enquanto a resistência elétrica dos materiais puros utilizados atualmente para detectar dióxido de nitrogênio aumenta entre 50 e 70 vezes na presença do gás tóxico, a do sensor que desenvolvemos apresenta um aumento de mil vezes. Esse é o sinal que utilizamos para medir a capacidade de detecção de um sensor”, disse Marcelo Ornaghi Orlandi, professor do Instituto de Química da Unesp de Araraquara e um dos autores do estudo, à Agência FAPESP. O projeto é coordenado por José Arana Varela, professor do IQ-Unesp e diretor-presidente do Conselho Técnico-Administrativo da Fundação de Amparo á Pesquisa de São Paulo (Fapesp).
O material desenvolvido pelos pesquisadores consiste em discos cristalinos de óxido de estanho – semelhantes a confetes de papel – em escala micrométrica (milionésima parte do metro).
Para desenvolver o material, eles utilizaram um processo chamado de redução carbotérmica, por meio do qual sintetizaram os discos na forma de óxido de estanho II, em vez da forma tradicional do óxido metálico – o dióxido de estanho IV (SnO2).
Ao mesmo tempo, conseguiram manter a estabilidade térmica e química, preservar a estrutura e fazer com que o material apresentasse maior sensibilidade ao dióxido de nitrogênio do que o SnO2 – um dos materiais mais estudados atualmente para aplicação como sensor do gás tóxico.
“O óxido de estanho é difícil de ser sintetizado porque é termicamente instável e, a temperaturas acima de 400 ºC, tende a se decompor”, explicou Orlandi. “Por meio de um controle fino, conseguimos pela primeira vez sintetizá-lo e, ao mesmo tempo, estabilizar suas propriedades térmicas e químicas e aumentar sua resposta sensora”.

Pesquisadores do Instituto de Química da Universidade Estadual Paulista (Unesp), campus de Araraquara, em parceria com colegas do Departamento de Ciência e Engenharia de Materiais do Massachusetts Institute of Technology (MIT), Estados Unidos, desenvolveram um material à base de óxido de estanho (SnO) com capacidade de detectar dióxido de nitrogênio (NO2) muito maior do que os sensores químicos já usados para identificar esse tipo de gás altamente tóxico, formado nas reações de combustão dos motores dos veículos.

Desenvolvido por meio de um projeto apoiado no âmbito de um acordo com o MIT, o material deverá resultar em uma patente compartilhada pelas duas instituições e foi descrito em um artigo publicado na edição de setembro da revista Sensors and Actuators B: Chemical.

“Enquanto a resistência elétrica dos materiais puros utilizados atualmente para detectar dióxido de nitrogênio aumenta entre 50 e 70 vezes na presença do gás tóxico, a do sensor que desenvolvemos apresenta um aumento de mil vezes. Esse é o sinal que utilizamos para medir a capacidade de detecção de um sensor”, disse Marcelo Ornaghi Orlandi, professor do Instituto de Química da Unesp de Araraquara e um dos autores do estudo, à Agência FAPESP. O projeto é coordenado por José Arana Varela, professor do IQ-Unesp e diretor-presidente do Conselho Técnico-Administrativo da Fundação de Amparo á Pesquisa de São Paulo (Fapesp).

O material desenvolvido pelos pesquisadores consiste em discos cristalinos de óxido de estanho – semelhantes a confetes de papel – em escala micrométrica (milionésima parte do metro).

Para desenvolver o material, eles utilizaram um processo chamado de redução carbotérmica, por meio do qual sintetizaram os discos na forma de óxido de estanho II, em vez da forma tradicional do óxido metálico – o dióxido de estanho IV (SnO2).

Ao mesmo tempo, conseguiram manter a estabilidade térmica e química, preservar a estrutura e fazer com que o material apresentasse maior sensibilidade ao dióxido de nitrogênio do que o SnO2 – um dos materiais mais estudados atualmente para aplicação como sensor do gás tóxico.

“O óxido de estanho é difícil de ser sintetizado porque é termicamente instável e, a temperaturas acima de 400 ºC, tende a se decompor”, explicou Orlandi. “Por meio de um controle fino, conseguimos pela primeira vez sintetizá-lo e, ao mesmo tempo, estabilizar suas propriedades térmicas e químicas e aumentar sua resposta sensora”.

 

Mais Lidas De Hoje
veja Também
Energia Solar
Transpetro inaugura usina solar para abastecer o Termina...
17/07/25
Internacional
IBP participa do World Oil Outlook da OPEP com análise s...
17/07/25
BRANDED CONTENT
20 Anos de Merax – Histórias que Norteiam o Futuro
16/07/25
Fenasucro
Bioenergia ganha força no debate global sobre energia li...
16/07/25
Gás Natural
Gasmig: 39 anos de energia, inovação e compromisso com M...
16/07/25
Combustíveis
Preços do diesel, etanol e gasolina seguem tendência de ...
15/07/25
Evento
IBP debate direitos humanos na cadeia de suprimentos de ...
15/07/25
Sustentabilidade
PRIO avança em sustentabilidade e reforça governança cor...
15/07/25
PPSA
Produção de petróleo da União sobe 13,2% e alcança 128 m...
15/07/25
Bacia de Campos
Equinor recebe do Ibama Licença de Instalação do Gasodut...
15/07/25
Firjan
Para tratar sobre o "tarifaço", Firjan participa de reun...
15/07/25
Tecnologia e Inovação
Equinor lança terceira edição de programa de inovação ab...
14/07/25
Fenasucro
Brasil ocupa posição de destaque mundial na cogeração re...
14/07/25
Pré-Sal
FPSO P-78 deixa Singapura rumo ao campo de Búzios
14/07/25
RenovaBio
Lista de sanções a distribuidores de combustíveis inadim...
14/07/25
Gás Natural
Competitividade econômica e sustentabilidade para o Para...
14/07/25
Etanol
Etanol recua na segunda semana de julho, aponta Cepea/Esalq
14/07/25
Petrobras
Angélica Laureano assume como Diretora Executiva de Tran...
11/07/25
Gás Natural
Transportadoras de gás natural lançam nova versão de pla...
11/07/25
Parceria
Equinor e PUC-Rio firmam parceria de P&D de R$ 21 milhões
11/07/25
Resultado
Setor de Óleo e Gás lidera distribuição de proventos em ...
10/07/25
VEJA MAIS
Newsletter TN

Fale Conosco

Utilizamos cookies para garantir que você tenha a melhor experiência em nosso site. Se você continuar a usar este site, assumiremos que você concorda com a nossa política de privacidade, termos de uso e cookies.